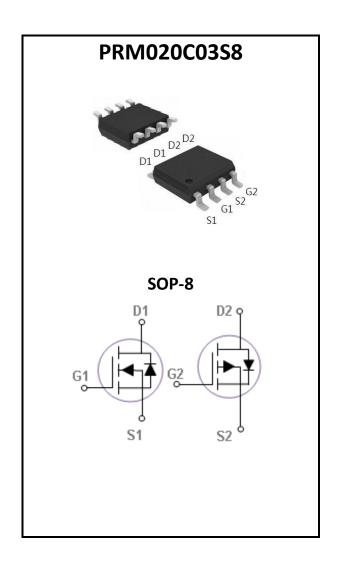


PRM020C03S8

PFC Device Corporation

30V Single N+P Channel MOSFET

Major ratings and characteristics


Characteristics	Values	Units
N-C	:H	
V_{DS}	30	V
$I_D (T_C=25^{\circ}C)$	8	Α
Max. R _{DS(ON)} @V _{GS} =10V	20	mΩ
P-C	Н	
V_{DS}	-30	٧
I _D (T _C =25°C)	-5.5	Α
Max. R _{DS(ON)} @V _{GS} =10V	50	mΩ
T _J Operating Junction Temperature	-55 to +150	°C

General Description

These N+P dual Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Typical Applications

- DC Fan
- Motor Drive Applications
- Networking Half / Full Bridge Topology

Features

- Fast switching
- Green Device Available
- Suit for 4.5V Gate Drive Applications

1. Characteristics

Maximum Ratings Characteristics

($T_A = 25$ °C unless otherwise specified)

Symbol	Parameter	Rating		Units
V_{DS}	Drain-Source Voltage	30	-30	V
V_{GS}	Gate-Source Voltage	±20	±20	V
	Drain Current – Continuous (T _C =25°C)	8	-5.5	А
I _D	Drain Current – Continuous (T _C =100°C)	5	-3.5	Α
I_{DM}^{-1}	Drain Current – Pulsed ¹	32	-22	Α
E _{AS}	Single Pulse Avalanche Energy ²	14	5	mJ
I_{AS}	Single Pulse Avalanche Current ²	17	10	Α
D	Power Dissipation (T _C =25°C)	2.9	5	W
P_{D}	P _D Power Dissipation – Derate above 25°C 0.02		W/°C	
T _{STG}	Storage Temperature Range	-55 to 150		°C
T_J	Operating Junction Temperature Range	-55 to	150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction to ambient		62.5	°C/W
$R_{ heta JC}$	Thermal Resistance Junction to Case		25	°C/W

Version 4.1 2 / 10

N-CH Electrical Characteristics

($T_J = 25$ °C unless otherwise specified)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	30	-		V
	Drain Source Leekage Current	V _{DS} =30V, V _{GS} =0V, T _J =25°C			1	uA
IDSS	Drain-Source Leakage Current	V _{DS} =24V, V _{GS} =0V, T _J =125°C			10	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA

On Characteristics

D	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =8A		15	20	mΩ
$R_{DS(ON)}$	\(\(\(\(\(\) \) \)		-	21	30	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V V I 250A	1.2	1.5	2.5	V
$\triangle V_{GS(th)}$	VGS(th) Temperature Coefficient	$V_{GS}=V_{DS}$, $I_{D}=250uA$	-	-4	-	mV/°C
$g_{\sf fs}$	Forward Transconductance	V _{DS} =10V, I _D =3A		3		S

Dynamic and switching Characteristics

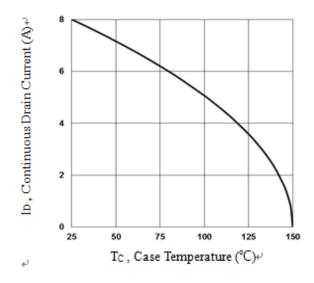
Dynamic	Dynamic and switching characteristics					
Q_g	Total Gate Charge			4.1	6	
Q_gs	Gate-Source Charge	V_{DS} =15V, V_{GS} =4.5V, I_{D} =8A		1	1.4	nC
Q_{qd}	Gate-Drain Charge			2.1	4	
$T_{d(on)}$	Turn-On Delay Time			2.8	5	
T _r	Turn-On Rise Time	V_{DD} =15V, V_{GS} =10V, R_{G} =6 Ω		7.2	14	ns
$T_{d(off)}$	Turn-Off Delay Time	I _D =1A		15.8	30	115
T_f	Turn-Off Fall Time			4.6	9	
C_{iss}	Input Capacitance			345	500	
C _{oss}	Output Capacitance	V_{DS} =25V, V_{GS} =0V, f=1MHz		55	80	pF
C_{rss}	Reverse Transfer Capacitance			32	55	
R _q	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		3.2	6.4	Ω

Drain-Source Diode Characteristics

Iş	6	Continuous Source Current	V _G =V _D =0V , Force Current		8	Α
Is	М	Pulsed Source Current	V _G =V _D =UV, Force Current		16	Α
Vs	3	Source to Drain Diode Voltage	$V_{GS}=0V$, $I_{S}=1A$, $T_{J}=25^{\circ}C$	 	1	V

Note:

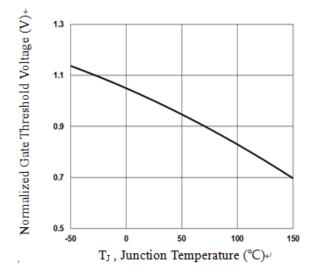
- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. L=0.1mH, RG=25 Ω , Starting TJ=25 $^{\circ}$ C
- 3. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.



Version 4.1 3 / 10

2. N-CH Characteristics Curves

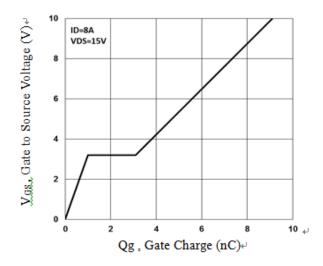
Ratings and Characteristics Curves


(T_A = 25°C unless otherwise specified)

1.6 (Cm) 90 ucs stand of the st

Fig.1 Continuous Drain Current vs. T_C

Fig.2 Normalized RDSON vs. T_J



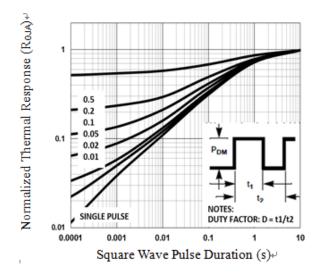

Fig.3 Normalized V_{th} vs. T_J

Fig.4 Gate Charge Waveform

Version 4.1 4 / 10

Characteristics PRM020C03S8

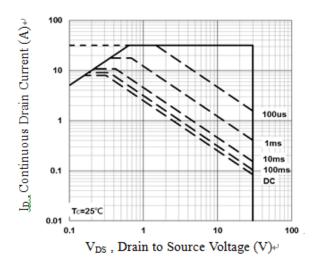


Fig.5 Normalized Transient Response

Fig.6 Maximum Safe Operation Area

Version 4.1 5 / 10

3. P-CH Characteristics

P-CH Electrical Characteristics

($T_J = 25$ °C unless otherwise specified)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	-30			V
$\triangle B_{VDSS}/\triangle T_{J}$	B _{VDSS} Temperature Coefficient	Reference to 25°C, I _D =1mA		-0.03		V/°C
	Drain-Source Leakage Current	V _{DS} =30V, V _{GS} =0V, T _J =25°C			-1	uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V, V _{GS} =0V, T _J =125°C			-10	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA

On Characteristics

D	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-5A		40	50	mΩ
R _{DS(ON)}		V _{GS} =-4.5V, I _D =-3A	1	67	90	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V V I 250	-1.2	-1.6	-2.5	V
$\triangle V_{GS(th)}$	VGS(th) Temperature Coefficient	$V_{GS}=V_{DS}$, $I_{D}=-250uA$	1	4	-	mV/°C
g fs	Forward Transconductance	V _{DS} =-10V, I _D =-3A	-	3.5	-	S

Dynamic and switching Characteristics

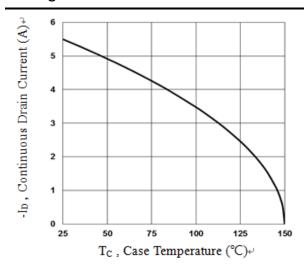
<u> </u>	ind switching onaracteristics				
Q_{g}	Total Gate Charge		 5.1	7	
Q_{gs}	Gate-Source Charge	V_{DS} =-15V, V_{GS} =-4.5V, I_{D} =-3A	 2	3	nC
Q_gd	Gate-Drain Charge		 2.2	4	
$T_{d(on)}$	Turn-On Delay Time		 3.4	6	
T_r	Turn-On Rise Time	V_{DD} =-15V, V_{GS} =-10V, R_G =6 Ω	 10.8	21	ns
$T_{d(off)}$	Turn-Off Delay Time	I _D =-1A	 26.9	51	115
T_f	Turn-Off Fall Time		 6.9	13	
C _{iss}	Input Capacitance		 560	810	
C _{oss}	Output Capacitance	V_{DS} =-15V, V_{GS} =0V, f=1MHz	 55	80	pF
C _{rss}	Reverse Transfer Capacitance		 40	60	

Drain-Source Diode Characteristics

Is	Continuous Source Current	V -V -0V Force Current		-5.5	Α
I _{SM}	Pulsed Source Current	$V_G=V_D=0V$, Force Current		-11	Α
V _{SD} ¹	Source to Drain Diode Voltage	V_{GS} =0V, I_{S} =1A, T_{J} =25 $^{\circ}$ C	 	-1	V

Note:

Version 4.1 6 / 10


^{1.} The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.

Characteristics PRM020C03S8

4. P-CH Characteristics Curves

Ratings and Characteristics Curves

(T_A = 25°C unless otherwise specified)

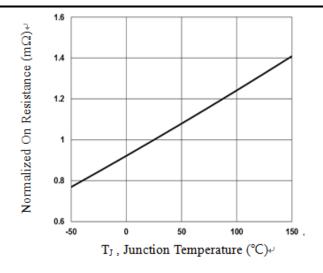


Fig.7 Continuous Drain Current vs. T_C

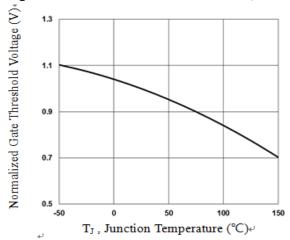
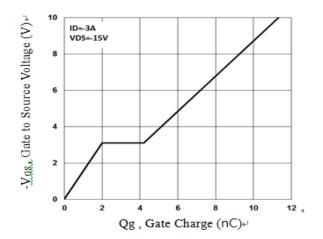


Fig.8 Normalized RDSON vs. T_J



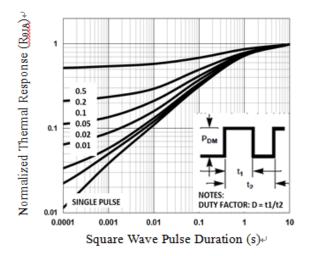

Fig.9 Normalized V_{th} vs. T_J

Fig.10 Gate Charge Waveform

Version 4.1 7 / 10

Characteristics PRM020C03S8

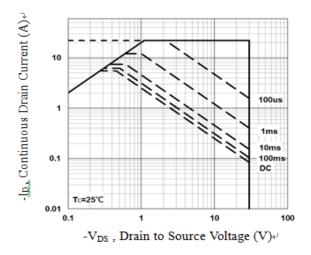


Fig.11 Normalized Transient Response

Fig.12 Maximum Safe Operation Area

Version 4.1 8 / 10

5. Marking information

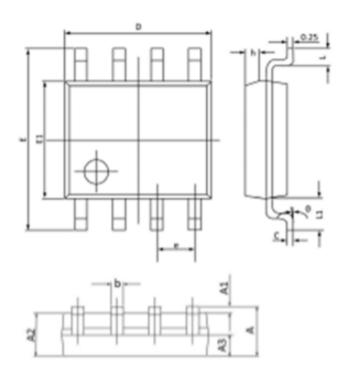
Top Marking Rule

PFC PRM
020C03S8
YYWW ABSH

PRM020C03S8 = Product Type Marking Code

YYWW = Date Code

YY = Last two digits of year


WW = Week code

ABS = Assembly code

H = Halogen Free (N/A = common molding compound)

6. Package information

Package Outline Dimensions millimeters

Dim.	Min.	Max.	
A	1.35	1.75	
Al	0.10	0.25	
A2	1.30		
A3	0.60	0.70	
b	0.35	0.49	
С	0.18	0.26	
D	4.70	5.10	
E	5.80	6.20	
El	3.70	4.10	
e	1.27	BSC	
h	0.25	0.50	
L	0.40	0.90	
Ll	1.05	BSC	
θ	0°	8°	
All Dimensions in mm			

Version 4.1 9 / 10

7. Ordering information

Part Number	Package	Delivery mode
PRM020C03S8	SOP-8	3000 pcs / 13" diameter reel

Mechanical

Molder Plastic: UL Flammability Classification Rating 94V-0

Device Weight: 0.003 ounces (0.085grams) – SOP-8

PFC Device Corp reserves the right to make changes without further notice to any products herein. PFC Device Corp makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does PFC Device Corp assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in PFC Device Corp data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. PFC Device Corp does not convey any license under its patent rights nor the rights of others. PFC Device Corp products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the PFC Device Corp product could create a situation where personal injury or death may occur. Should Buyer purchase or use PFC Device Corp products for any such unintended or unauthorized application, Buyer shall indemnify and hold PFC Device Corp and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that PFC Device Corp. was negligent regarding the design or manufacture of the part.

Version 4.1 10 / 10