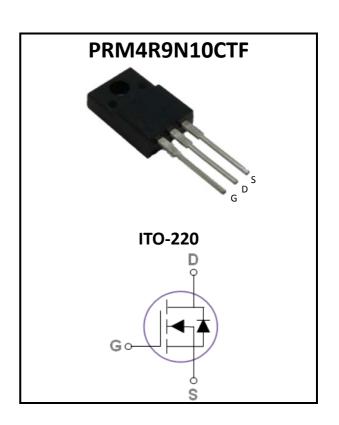


PRM4R9N10CTF

PFC Device Corporation


100V Single N-Channel MOSFET

Major ratings and characteristics

Characteristics	Values	Units
V_{DS}	100	٧
$I_D (T_C=25^{\circ}C)$	60	Α
Max. R _{DS(ON)} @V _{GS} =10V	4.9	mΩ
T _J Operating Junction Temperature	-55 to +150	°C

General Description

The N-Channel enhancement mode power field effect transistor is using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. The device is well suited for high efficiency fast switching applications.

Typical Applications

- Charger Adapter
- Power Tools
- LED Lighting

Features

- Max. $R_{DS(ON)}=4.9m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- 100% E_{AS} Guaranteed
- Green Device Available

1. Characteristics

Maximum Ratings Characteristics

($T_A = 25$ °C unless otherwise specified)

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	±20	V
	Drain Current – Continuous (T _C =25°C)	60	Α
I _D	Drain Current – Continuous (T _C =100°C)	37.9	Α
I _{DM}	Drain Current – Pulsed ¹	240	Α
E _{AS}	Single Pulse Avalanche Energy ²	245	mJ
I _{AS}	Single Pulse Avalanche Current ²	35	Α
P _D	Power Dissipation (T _C =25°C)	35.7	W
' D	Power Dissipation – Derate above 25°C	0.28	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction to ambient		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction to Case		3.5	°C/W

Version 4.1 2 / 8

Electrical Characteristics

(T_J = 25 °C unless otherwise specified)

Off Characteristics

	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	BV_{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	100			V
		Dunin Course Leakage Current	V _{DS} =100V, V _{GS} =0V, T _J =25°C			1	uA
	I_{DSS}	Drain-Source Leakage Current	V _{DS} =100V, V _{GS} =0V, T _J =125°C			250	uA
ĺ	I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA

On Characteristics

R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A			4.9	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=250uA$	2.0	-	4.0	V
g fs	Forward Transconductance	V _{DS} =5V, I _D =20A		60	-	S

Dynamic and switching Characteristics

Q_{g}	Total Gate Charge ^{3, 4}	V _{DS} =50V, V _{GS} =10V, I _D =20A	 70	
Q_{qs}	Gate-Source Charge ^{3, 4}		 23.5	 nC
Q_{gd}	Gate-Drain Charge ^{3, 4}		 11	
$T_{d(on)}$	Turn-On Delay Time ^{3, 4}		 30	
T_r	Turn-On Rise Time ^{3, 4}	V_{DD} =50V, V_{GS} =10V, R_{G} =6 Ω I_{D} =20A	 69	 no
$T_{d(off)}$	Turn-Off Delay Time ^{3, 4}		 44	 ns
T_f	Turn-Off Fall Time ^{3, 4}		 43	
C_{iss}	Input Capacitance		 5100	
C_{oss}	Output Capacitance	V _{DS} =50V, V _{GS} =0V, f=1MHz	 400	 pF
C_{rss}	Reverse Transfer Capacitance		 25	
R_{g}	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	 0.4	 Ω

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$V_{GS}=0V$, $I_{S}=20A$	 	1.5	V
t _{rr}	Reverse Recovery Time	1 004 di/dt 1004/up	 73		ns
Q _{rr}	Reverse Recovery Charge	I _S =20A, di/dt=100A/us	 150		nC

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. V_{DD} =50V, V_{GS} =10V, L=0.4mH, I_{AS} =35A, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
- 3. The data tested by pulsed , pulse width \leq 300us, duty cycle \leq 2%.
- 4. Essentially independent of operating temperature.

Version 4.1 3 / 8

2. Characteristics Curves

Ratings and Characteristics Curves

(T_A = 25°C unless otherwise specified)

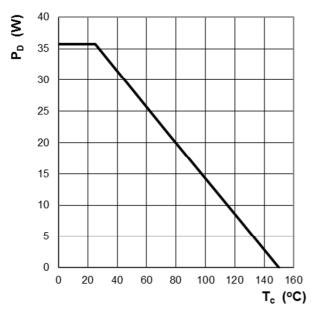
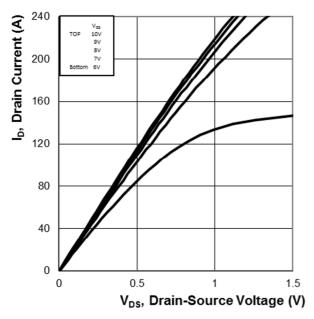


Figure 1: Power Dissipation

Figure 2: Continuous Drain Current vs. T_C

New 1.4 | 1.3 | 1.3 | 1.4 | 1.2 | 1.2 | 1.4 | 1.1 | 1.

Figure 3: Normalized R_{DS(ON)} vs. T_J


Figure 4: Normalized BV_{DSS} vs. T_J

Version 4.1 4 / 8

Ratings and Characteristics Curves

($T_A = 25^{\circ}C$ unless otherwise specified)

Figure 5: On-Region Characteristics

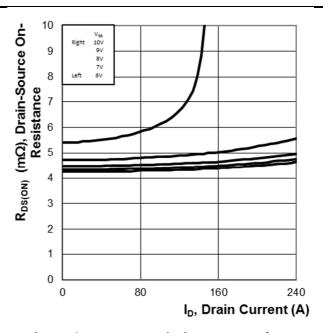


Figure 6: Typ. R_{DS} Variation vs. I_D and V_{GS}

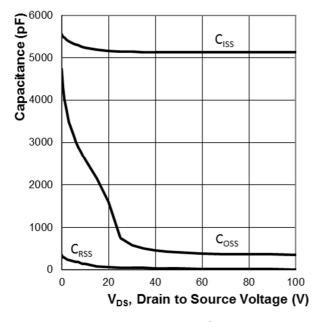


Figure 7: Typ. Capacitance Characteristics

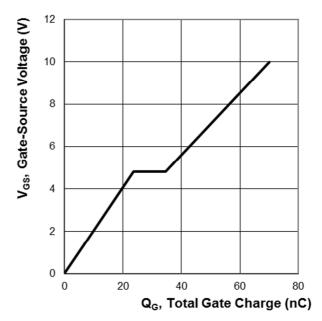


Figure 8: Typ. Gate Charge Characteristics

Version 4.1 5 / 8

Ratings and Characteristics Curves

(T_A = 25°C unless otherwise specified)

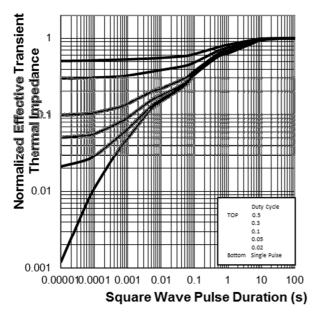


Figure 9: Normalized Thermal Transient Impedance, Junction-to-Case

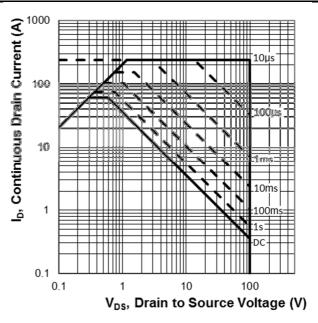


Figure 10: Maximum Safe Operation Area

Version 4.1 6 / 8

3. Marking information

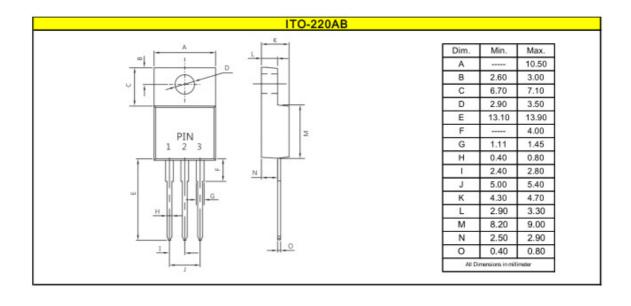
Top Marking Rule

PFC PRM
4R9N10CTF
YYWW ABSH

PRM4R9N10CTF = Product Type Marking Code

YYWW = Date Code

YY = Last two digits of year


WW = Week code

ABS = Assembly code

H = Halogen Free (N/A = common molding compound)

4. Package information

Package Outline Dimensions millimeters

Version 4.1 7 / 8

5. Ordering information

Part Number	Package	Delivery mode
PRM4R9N10CTF	ITO-220AB	50 pcs / Tube

Mechanical

Molder Plastic: UL Flammability Classification Rating 94V-0
 Device Weight: 0.06 ounces (1.74grams) - ITO-220AB

Mounting Torque : Recommended 4~5 kg-cm

PFC Device Corp reserves the right to make changes without further notice to any products herein. PFC Device Corp makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does PFC Device Corp assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in PFC Device Corp data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. PFC Device Corp does not convey any license under its patent rights nor the rights of others. PFC Device Corp products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the PFC Device Corp product could create a situation where personal injury or death may occur. Should Buyer purchase or use PFC Device Corp products for any such unintended or unauthorized application, Buyer shall indemnify and hold PFC Device Corp and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that PFC Device Corp was negligent regarding the design or manufacture of the part.

Version 4.1 8 / 8