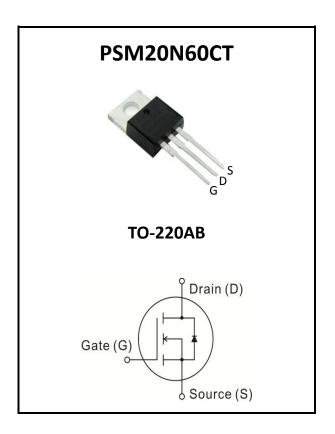


PSM20N60CT

PFC Device Corporation


20A 600V Single N-Channel Power MOSFET

Major ratings and characteristics

Characteristics	Values	Units
V _{DS} @T _J max	600	V
R _{DS(ON),} V _{GS} =10V	0.19	Ω
I _D	20	Α

General Description

PFC MLSJ (Multi-Layer Super Junction) MOSFET technology is the ideal choice for the PFC and PWM application. PFC device provides practical advantages of higher pressure-resistance, lower on-resistance to achieve the ideal balance between the switching speed and on-resistance.

Typical Applications

PFC stages, hard switching PWM stages and resonant switching stages for PC, Adapter, LCD & PDP TV, Lighting, Server, Telecom and UPS.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Features

- Advanced High Voltage Technology
- Low On-Resistance
- Low Gate Threshold Voltage
- Low Input Capacitance
- Extreme dv/dt rated
- Lead Free Finish, RoHS Compliant

1. Characteristics

Maximum Ratings Characteristics

($T_A = 25$ °C unless otherwise specified)

Symbol	Parameter	Rating	Units	
V_{DSS}	Drain-Source Voltage	600	V	
I.	Drain Current – Continuous (T _C =25°C)	20	Α	
I _D	Drain Current – Continuous (T _C =100°C)	13	Α	
I _D pulsed	Pulsed Drain Current tp limited by T _J max (Note 1)	60	Α	
E _{AS}	Single Pulse Avalanche Energy (Noted 2)	690	mJ	
_	Avalanche Energy, repetitive t _{AR} limited by Tjmax (Note 3)			
E _{AR}	I _D =20A , V _{DD} =50V	1	mJ	
I _{AR}	Avalanche Current, repetitive t _{AR} limited by Tjmax	20	А	
V_{GS}	Gate-Source Voltage Static	±20	V	
V_{GS}	Gate-Source Voltage AC (f>1Hz)	±30	V	
P _{tot}	Power Dissipation	204	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
dv/dt	Peak Diode Recovery dv/dt (Note 4)	15	V/nS	
dv/dt	MOSFET dvdt ruggedness, V _{DS} =480V	50	V/nS	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction to ambient		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction to case (Drain)		0.61	°C/W

Version 4.1 2 / 10

Electrical Characteristics

(T_J = 25 °C unless otherwise specified)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	600			V
	V _{DS} =600V,V _{GS} =0V, T _J =25°C		0.05	1	uA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =600V,V _{GS} =0V, T _J =150°C			100	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±30V , V _{DS} =0V			±100	nA

On Characteristics

	R _{DS(ON)} Static Drain-Source On-Resistance	V _{GS} =10V , I _D =13A, T _J =25°C		0.165	0.190	Ω	
		V _{GS} =10V , I _D =13A, T _J =150°C		0.45		Ω	
	$V_{GS(th)}$	Gate-Source Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=1000uA$	2.8	3.2	3.9	V
Ī	R_G	Gate input resistance	f=1MHz, open Drain		0.54		Ω

Dynamic and switching Characteristics

Q_gs	Gate-Source Charge		 13		
Q_gd	Gate-Drain Charge	V_{DD} =480V, I_{D} =20A,	 33		nC
Q_q	Gate charge total	V _{GS} =0 to 10V	 75	110	
V _(plateau)	Gate plateau voltage		 5.9		V
gfs	Transecondtance	$V_{DS} \ge 2*ID*R_{DS}(on)max, I_D=13A$	 20.5		S
$T_{d(on)}$	Turn-On Delay Time		 8		
T _r	Rise Time	V_{DD} =380V, V_{GS} =0/13V, I_{D} =20A,	 34		nS
$T_{d(off)}$	Turn-Off Delay Time	Rg=3.6 Ω , T _J =25 $^{\circ}$ C	 42		113
T_f	Fall Time		 58		
C_{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =100V	 2400		
C_{oss}	Output Capacitance	f=1 MHz	 81		pF
C_{rss}	Reverse Transfer Capacitance		 32		

Drain-Source Diode Characteristics and Maximum ratings

V_{SD}	Inverse diode forward voltage	$I_S = 20A, V_{GS} = 0V$	 0.91	1.2	V
t _{rr}	Reverse Recovery Time	-V _R =480V. I _F =I _S .	 491	800	nS
Q_{rr}	Reverse Recovery Charge	,	 10		uC
I _{rrm}	Peak reverse recovery current	di _F /dt=100A/uS	 42		A

Note

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. $V_{DD}=50V$, $I_D=10A$, Starting $T_J=25$ °C.
- 3. Repetitive avalanche cause additional power lose that can be calculated as P_{AV}=E_{AR}*f.
- 4. $I_{SD} <= I_D$, di/dt <= 400 A/us, $T_J < T_J$, max

Version 4.1 3 / 10

2. Characteristics Curves

Ratings and Characteristics Curves

($T_A = 25^{\circ}C$ unless otherwise specified)

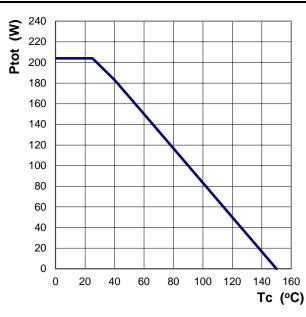


Figure 1: Power Dissipation $P_{tot} = f(T_c)$

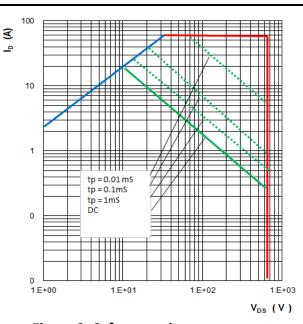


Figure 2: Safe operating area $I_D = f(V_{DS})$ parameter : D = 0, T_C =25°C

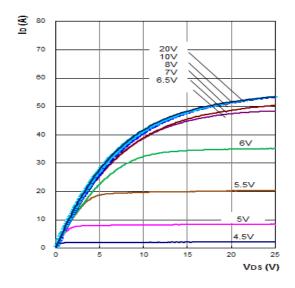


Figure 3: Typ. Output Characteristics $I_D = f(V_{DS})$; $T_J = 25^{\circ}C$ parameter: $t_p = 100uS$, V_{GS}

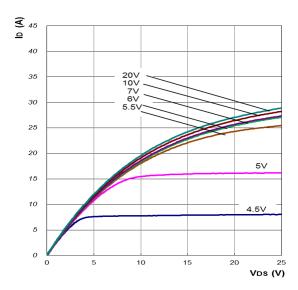


Figure 4: Typ. Output Characteristics $I_D = f(V_{DS})$; $T_J = 150^{\circ}C$ parameter : $t_p = 100uS$, V_{GS}

Version 4.1 4 / 10

Ratings and Characteristics Curves

($T_A = 25^{\circ}C$ unless otherwise specified)

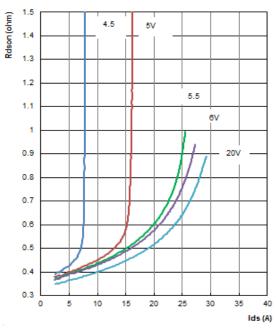


Figure 5: Typ. Drain Source On-Resistance $R_{DS}(on) = f\left(I_D\right)$ parameter : $t_p = 100$ uS, $T_J = 150$ °C, V_{GS}

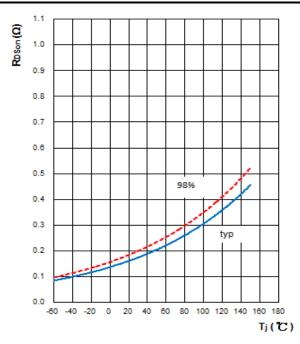


Figure 6: Drain-Source On-state Resistance $R_{DS}(on) = f(T_J)$ parameter: $I_D = 13A$, $V_{GS} = 10V$

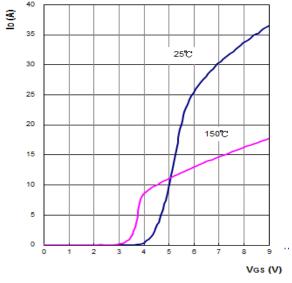
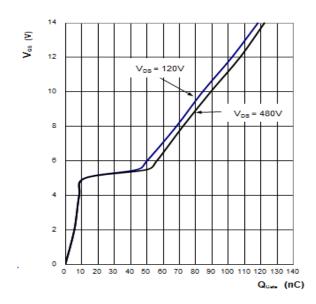
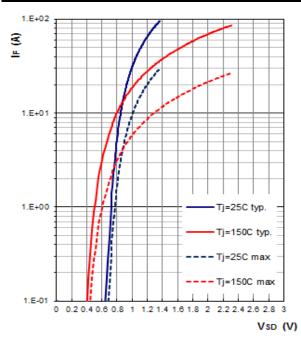


Figure 7: Typ. Transfer Characteristics $I_D = f(V_{GS}); V_{DS} \ge 2 X I_D X R_{DS}(on) max$ parameter : t_p =100 uS

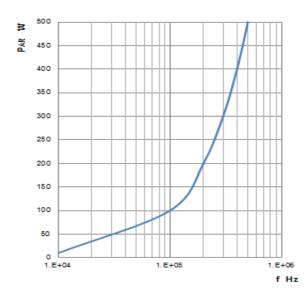



Figure 8: Typ. Gate Charge $V_{GS} = f(Q_{GATE})$ $parameter: I_D=20A \ pulsed$

Version 4.1 5 / 10

Ratings and Characteristics Curves

($T_A = 25^{\circ}C$ unless otherwise specified)



740 500 700 680 660 640 620 560 560 540 -60 -20 20 60 100 140 180 Tj (°C)

Figure 9: Forward characteristics of body diode $I_F = f(V_{SD})$

parameter : T_J , t_p=100uS

Figure 10: Drain-source breakdown voltage $V_{(BR)DSS} = f(T_J)$

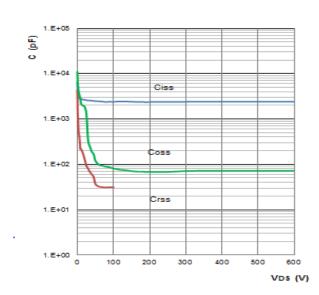


Figure 11: Avalanche power losses $P_{AR} = f(f)$ parameter : $E_{AR} = 1 \text{ mJ}$

Figure 12: Typ. Capacitances $C = f (V_{DS})$ parameter : V_{GS} =0V, f=1MHz

Version 4.1 6 / 10

Ratings and Characteristics Curves

($T_A = 25^{\circ}C$ unless otherwise specified)

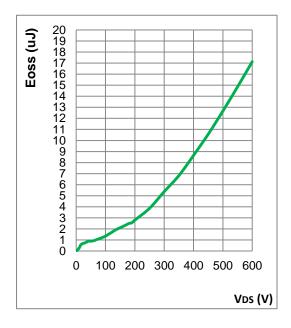


Figure 13: Typ. C_{oss} stored energy E_{oss} =f (V_{DS})

Version 4.1 7 / 10

3. Test Circuits and Waveforms

Test Circuits and Waveforms

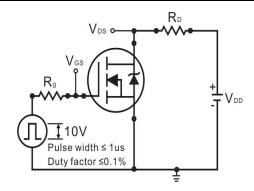


Figure 1: Switching times test circuit

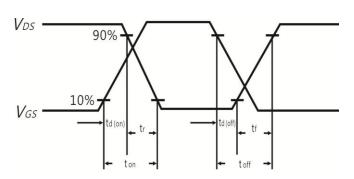


Figure 2: Switching time waveform

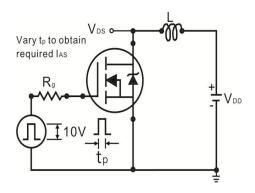


Figure 3:Unclamped test circuit

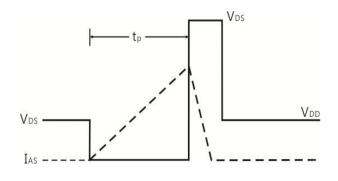


Figure 4: Unclamped test waveform

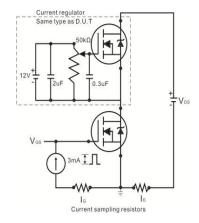


Figure 5:Gate charge test circuit

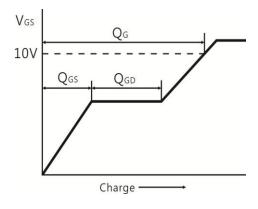


Figure 6: Basic gate charge waveform

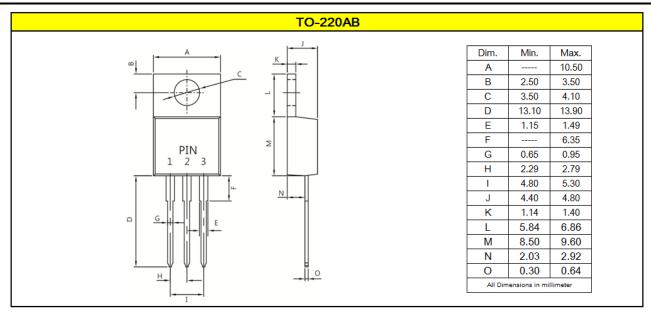
Version 4.1 8 / 10

4. Marking information

Top Marking Rule

PFC PSM 20N60CT YYWW ABSH PSM20N60CT = Product Type Marking Code

YY = Last two digits of year


WW = Week code

ABS = Assembly code

H = Halogen Free (N/A = common molding compound)

5. Package information

Package Outline Dimensions millimeters

Version 4.1 9 / 10

6. Ordering information

Part Number	Package	Delivery mode
PSM20N60CT	TO-220AB	50 pieces / tube

Note: For Halogen Free molding compound, add "H" suffix to part number above.

Mechanical

Molder Plastic: UL Flammability Classification Rating 94V-0

■ Device Weight: 0.07 ounces (1.96grams) - TO-220AB

■ Mounting Torque: Recommended 10 in-lbs maximum

PFC Device Corp reserves the right to make changes without further notice to any products herein. PFC Device Corp makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does PFC Device Corp assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in PFC Device Corp data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. PFC Device Corp does not convey any license under its patent rights nor the rights of others. PFC Device Corp products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the PFC Device Corp product could create a situation where personal injury or death may occur. Should Buyer purchase or use PFC Device Corp products for any such unintended or unauthorized application, Buyer shall indemnify and hold PFC Device Corp and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that PFC Device Corp was negligent regarding the design or manufacture of the part.

Version 4.1 10 / 10